Main Article Content

Abstract





CRISPR (clustered regularly interspaced short palindromic repeats)-based genome-wide functional genomics can be applied to uncover novel genes controlling an antiviral immune response, thereby augmenting antiviral immunity. To date, much progress has been made in understanding the host and viral factors influencing the antiviral immune response since its discovery. However, many of the contributing genetic factors for the an- tiviral response remain uncharacterized. Using antiviral innate immu- nity as a model, this study reports the first genome-wide functional ge- nomic approach using an integrated lentivirus CRISPR-based gene knock- out (GeCKO) screening library to identify critical genetic factors influenc- ing the antiviral immune response. This functional CRISPR-based genomic regime is intended to enhance the understanding of genes and pathways controlling an antiviral immune response and broaden the use of CRISPR methodologies in antiviral research for therapeutic innovations. The scope of this study is to answer critical questions regarding how innate immunity fights off viral infections. Two hypotheses are investigated experimentally that key genetic factors influencing the immune induction of the interferon response remain to be found and perturbation of the interferon response will reveal a network of previously uncharacterized genes and pathways controlling an antiviral immune response. With systemic and comprehen- sive efforts to dissect the host-virus molecular arms race, a more nuanced understanding of the host antiviral response will be acquired, including the discovery of novel genes and pathways involved in antiviral immunity.





Keywords

CRISPR Genomics Antiviral Innate Immune Response

Article Details

How to Cite
1.
Magdi A. Ali, Mohamed Zakaria El-Sayed, Wijdan Alomaim. CRISPR-Based Functional Genomics in Antiviral Innate Immune Response. JBB [Internet]. 2025 Mar. 26 [cited 2025 Apr. 24];4(1):27-39. Available from: http://biomedbiochem.nabea.pub/biomedbiochem/article/view/87

How to Cite

1.
Magdi A. Ali, Mohamed Zakaria El-Sayed, Wijdan Alomaim. CRISPR-Based Functional Genomics in Antiviral Innate Immune Response. JBB [Internet]. 2025 Mar. 26 [cited 2025 Apr. 24];4(1):27-39. Available from: http://biomedbiochem.nabea.pub/biomedbiochem/article/view/87

References

  1. Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a new an- tiviral strategy for treating hepatitis viral infec- tions. International Journal of Molecular Sci- ences. 2023;25(1):334.
  2. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84-7. doi:10.1126/science.1247005.
  3. Sanjana NE, Shalem O, Zhang F. Improved genome-wide CRISPR-Cas9 knockout screening using a lentiviral library. Nature Methods. 2014;11(8):783-4. doi:10.1038/nmeth.3047.
  4. Zhang Y, Zhang J, He Z, et al. CRISPR-based screens for antiviral re- search. Antiviral Research. 2018;158:1-11. doi:10.1016/j.antiviral.2018.08.010.
  5. Saito T, Hirai R, Ono T, et al. CRISPR- based functional genomics reveals key regulators of antiviral immune responses. Cell Host & Microbe. 2020;28(1):95-107.e5. doi:10.1016/j.chom.2020.05.013.
  6. Ryu WS. Discovery and Classification. Molecular Virology of Human Pathogenic Viruses. 2017:3-20.
  7. Li H, Xie X, Zeng M, et al. CRISPR-Cas9- based functional genomics approach for identi- fying antiviral factors in human cells. Viruses. 2020;12(3):327. doi:10.3390/v12030327.
  8. Wensel TG, Finzi A, Kelly F, et al. CRISPR- Cas9-mediated functional analysis of im- mune response genes during viral infections. Journal of Immunology. 2020;205(3):648-56. doi:10.4049/jimmunol.2000355.
  9. Doudna JA, Charpentier E. The new fron- tier of genome engineering with CRISPR- Cas9. Science. 2014;346(6213):1258096.doi:10.1126/science.1258096.
  10. Mavrakis KJ, Dargemont C. Functional genomics using CRISPR/Cas9 for antiviral research. Viruses. 2019;11(10):928. doi:10.3390/v11100928.
  11. Zoladek J, Nisole S. Mosquito-borne fla- viviruses and type I interferon: catch me if you can! Frontiers in Microbiology. 2023;14:1257024. doi:10.3389/fmicb.2023.1257024.
  12. Zhang T, Li Y, Chen Y, et al. CRISPR-Cas9 screens identify host factors required for antivi- ral immune responses. Nature Communications. 2020;11(1):5107. doi:10.1038/s41467-020-18958-1.
  13. Albdeery A, Alzamily A. Evaluation of the effect of injections of both platelet-rich plasma and hyaluronic acid in patients with early knee osteoarthritis via the concentra- tion of interleukin-1β in serum. Journal of Biomedicine and Biochemistry. 2022;1(3):39-49. doi:10.57238/jbb.2022.20103.
  14. Hillel Z, Alabady Z. Targeting of CD38 and other NAD-dependent En- zymes in Leukemia Patients. Journal of Biomedicine and Biochemistry. 2023;2(2):26-33. doi:10.57238/jbb.2023.6952.1036.
  15. Ali MA. Role of CRISPR-Cas Systems in the Pathogenesis of Periodontal Disease and Precision Periodontal Therapy. Trends in Pharmaceutical Biotechnology. 2024;2(2):38-49. doi:10.57238/tpb.2024.153196.1022.
  16. Finkelstein D, Liao M, Yuan J, et al. Dissect- ing antiviral immune mechanisms using CRISPR- based screens. Nature. 2019;572(7770):345-51. doi:10.1038/s41586-019-1442-x.
  17. Dilfy S, Mubark N, Ahad A. Optimizing Chrysin’s Anticancer Efficacy on MDA-MB-231 cells: synthesis and characterization of Chrysin- Loaded Gold/Chitosan Nanoparticles. Trends in Pharmaceutical Biotechnology. 2023;1(1):12-8. doi:10.57238/tpb.2023.144270.1001.
  18. Khilonawala F, Ali A, Mustafa AS. Elec- trospun Fibers with Lactobacillus Aci- dophilus: A Potential In Vitro Solution Against Gardnerella Infections. Trends in Pharmaceutical Biotechnology. 2023;1(1):1-1. doi:10.57238/tpb.2023.144236.1000.
  19. Mir A, Edraki A, Lee J, Sontheimer EJ. Type II-C CRISPR-Cas9 biology, mechanism, and applica- tion. ACS Chemical Biology. 2018;13(2):357-65. doi:10.1021/acschembio.7b00855.
  20. Chang Q, Li C, Wei W, et al. Functional genomics approaches to studying innate antiviral immune response. J Immunol Methods. 2020;485:112836. doi:10.1016/j.jim.2020.112836.
  21. Sadia M. A review on CRISPR-cas system based applications in oncology. Brac University; 2023.
  22. Yu Y. Applied machine learning for the analysis of CRISPR-Cas systems; 2023. Bayerische Julius- Maximilians-Universitaet Wuerzburg (Germany). doi:10.25972/OPUS-32021.
  23. Di Santo R, Yip D, Pelka P, et al. Targeting host cell factors with CRISPR to improve antivi- ral immunity. Curr Opin Immunol. 2020;62:101-9. doi:10.1016/j.coi.2019.10.009.
  24. Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, et al. High-contentCRISPR screening. Nature Reviews Methods Primers. 2022;2(1):1-23. doi:10.1038/s43586-021-00093-4.
  25. Ma Y, Zhang C, Chen X, et al. CRISPR/Cas9- based functional genomics for antiviral research: The state of the art. Viruses. 2019;11(8):741. doi:10.3390/v11080741.
  26. Tegnér J, Björkegren J. Perturbations to un- cover gene networks. TRENDS in Genetics. 2007;23(1):34-41. doi:10.1016/j.tig.2006.11.003.
  27. Koyama S, Ishii KJ, Coban C, Akira S. Innate immune response to viral in- fection. Cytokine. 2008;43(3):336-41. doi:10.1016/j.cyto.2008.07.009.
  28. Wade M. High-throughput silencing us- ing the CRISPR-Cas9 system: a review of the benefits and challenges. Journal of Biomolecular Screening. 2015;20(8):1027-39. doi:10.1177/1087057115587916.
  29. Przybyla L, Gilbert LA. A new era in func- tional genomics screens. Nature Reviews Genet- ics. 2022;23(2):89-103. doi:10.1038/s41576021-00409-w.
  30. Leung AK, Lee K, Xu Y, et al. CRISPR- Cas9 screening of host genes involved in innate immune responses to viral infection. J Virol. 2020;94(19):e01428-0. doi:10.1128/JVI.01428-20.
  31. Jones CE, Tan WS, Grey F, Hughes DJ. Discover- ing antiviral restriction factors and pathways us- ing genetic screens. Journal of General Virology. 2021;102(5):001603. doi:10.1099/jgv.0.001603.
  32. McManus D, Wolf J, Chabot B, et al. The role of CRISPR in discovering antiviral therapies tar- geting innate immune pathways. Antiviral Ther. 2021;26(4):257-65. doi:10.3851/IMP3501.
  33. Wu J, Lin S, Xue H, et al. CRISPR/Cas9-based functional screening reveals the importance of in- nate immunity in viral infections. Front Immunol. 2020;11:582. doi:10.3389/fimmu.2020.00582.
  34. Liu Y, Zhang X, Zhang Y, et al. Host- pathogen interaction analysis using CRISPR screens in human cell mod- els. PLoS Pathog. 2021;17(6):e1009684.doi:10.1371/journal.ppat.1009684.
  35. Katze MG, Fornek JL, Palermo RE, Walters KA, Korth MJ. Innate immune modulation by RNA viruses: emerging insights from func- tional genomics. Nature Reviews Immunology. 2008;8(8):644-54. doi:10.1038/nri2377.
  36. Winkler DA. Computational repurposing of drugs for viral diseases and current and future pandemics. Journal of Mathematical Chem- istry. 2024;62(10):2844-79. doi:10.1007/s10910-023-01568-3.
  37. Manry J, Pilla J, Picelli S, et al. CRISPR screens in human macrophages reveal host fac- tors involved in the innate immune response to viral infections. Cell Rep. 2021;35(3):108965. doi:10.1016/j.celrep.2021.108965.
  38. Platt MP. Cellular Mechanisms of Neurovascular Breakdown and Neuronal Dysfunction Following Recurrent Group A Streptococcus Infections in Mice. Columbia University; 2019.
  39. Kwok AJ, Mentzer A, Knight JC. Host genet- ics and infectious disease: new tools, insights and translational opportunities. Nature Reviews Genetics. 2021;22(3):137-53. doi:10.1038/s41576-020-00297-6.
  40. Merikangas AK, Shelly M, Knighton A, Kotler N, Tanenbaum N, Almasy L. What genes are differ- entially expressed in individuals with schizophre- nia? A systematic review. Molecular Psychia- try. 2022;27(3):1373-83. doi:10.1038/s41380-021-01420-7.
  41. Doudna J, Sternberg S. A crack in creation: The new power to control evolution. Random House; 2017.
  42. Russell CD, Baillie JK. Treatable traits and therapeutic targets: goals for sys- tems biology in infectious disease. Current Opinion in Systems Biology. 2017;2:140-6. doi:10.1016/j.coisb.2017.04.003.
  43. Xie L, Wu S, He R, Li S, Lai X, Wang Z. Iden- tification of epigenetic dysregulation gene mark- ers and immune landscape in kidney renal clear cell carcinoma by comprehensive genomic anal- ysis. Frontiers in Immunology. 2022;13:901662. doi:10.3389/fimmu.2022.901662.
  44. Aheget H, Mazini L, Martin F, Belqat B, Marchal JA, Benabdellah K. Exosomes: their role in pathogenesis, diagnosis and treat- ment of diseases. Cancers. 2020;13(1):84. doi:10.3390/cancers13010084.

Similar Articles

You may also start an advanced similarity search for this article.