

REVIEW ARTICLE

CRISPR-Cas9 in Drug Discovery: Revolutionizing Target Identification and Validation

Adil Abdelrahim Mohammed Yousif^{1,*0}

¹Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Asir-Abha 61421, Saudi Arabia

Abstract

In recent years, advancements in molecular biology have heralded a transformative era in drug discovery, with CRISPR-Cas9 emerging as a pivotal tool for enhancing the precision of target identification and validation. Originally derived from bacterial immune systems, this genome-editing technology allows for highly specific alterations in DNA sequences, thereby facilitating the investigation of gene functions associated with health and disease. Its capability for genome-wide screening has enabled researchers to systematically identify potential therapeutic targets, streamlining the drug development process. Furthermore, the application of CRISPR-Cas9 extends beyond mere identification—such interventions have proven invaluable in preclinical models, where they serve to validate the therapeutic relevance of identified targets. This innovative approach not only accelerates the drug discovery timeline but also offers novel insights into complex biological systems, positioning CRISPR-Cas9 as a cornerstone technology in the quest for effective therapies.

Keywords: : CRISPR-Cas9; Genome-editing; Drug discovery; Target validation; Therapeutic development

*Corresponding author:

aayusof@kku.edu.sa

Clinical Laboratory Sciences College of Applied Medical Sciences King Khalid University Asir-Abha 61421, Saudi Arabia

Received: November 16, 2024, Revised:December 13, 2024, Accepted:December 18, 2024,

DOI: 10.57238/jbb.2024.7432.1131

Access this article online

1 Introduction

The landscape of drug discovery has undergone a transformative shift with the advent of CRISPR-Cas9 technology, which is revolutionizing target identification and validation. This groundbreaking tool, characterized by its ability to facilitate precise genome editing, enables researchers to perform genome-wide screens that uncover novel genes implicated in various disease pathways. These high-throughput CRISPR screens serve as a critical asset in functional genomics, allowing investigators to elucidate gene functions that

may not only contribute to disease mechanisms but also present viable therapeutic targets. Furthermore, as seen in malaria research, where traditional validation methods fall short, the integration of CRISPR-Cas9 can enhance the efficacy and specificity of target validation efforts [1]. This innovative approach effectively bridges the gap between basic research and therapeutic application, establishing CRISPR-Cas9 as a cornerstone in the pursuit of advanced therapeutic interventions in diverse medical contexts [2].

1.1 Overview of CRISPR-Cas9 technology

The emergence of CRISPR-Cas9 technology has significantly advanced genetic research, providing a robust framework for precise genome editing. Initially discovered as an adaptive immune system in bacteria, CRISPR-Cas9 operates through a dual-component mechanism involving a guide RNA and the Cas9 nuclease, which together facilitate targeted DNA cleavage at specific genomic loci.

This systems versatility has enabled the generation of various cellular and animal models that accurately reflect human diseases, ultimately enhancing our understanding of pathophysiology and aiding in drug development [2]. Furthermore, researchers have developed systematic approaches utilizing CRISPR-Cas9 to elucidate complex genetic interactions, as evidenced by studies mapping human genetic networks and identifying therapeutically relevant interactions [3]. As such, CRISPR-Cas9 is not only instrumental in target identification but also in validating these targets within preclinical models, thus playing a critical role in the drug discovery pipeline.

1.2 CRISPR-Cas9 and its role in drug discovery

The application of CRISPR-Cas9 technology has ushered in a new era for drug discovery, particularly by enabling targeted approaches in the identification of disease-specific therapeutic targets.

Disease-specific drug discovery heavily relies on elucidating the genetic underpinnings of various conditions, and CRISPR's genome editing capabilities facilitate the generation of precise genetic models that mimic human diseases. For instance, innovative approaches utilizing CRISPR screens have been pivotal in oncology, allowing researchers to uncover novel oncogenes and validate them as therapeutic targets through loss-of-function studies. Additionally, in the context of rare and genetic disorders, CRISPR has proven invaluable for elucidating single-gene defects that underlie pathologies, enabling a targeted search for potential treatments that could rectify or compensate for dysfunctional proteins. These applications not only enhance the specificity and efficacy of potential drug candidates but also ensure that therapeutic interventions are grounded in an accurate understanding of disease mechanisms.

1.3 Importance of target identification and validation in drug development

The advancement of methodologies in drug development hinges critically upon the identification and validation of therapeutic targets, a process that dictates the success of subsequent clinical interventions. In the context of CRISPR-Cas9, this technology facilitates unprecedented precision in delineating gene functions and elucidating molecular pathways associated with various diseases. Through genome-wide screens, CRISPR enables the identification of candidate genes that play pivotal roles in disease progression, thereby laying the groundwork for targeted therapy development. Furthermore, the validation of these targets utilizing CRISPR-based models enhances the efficacy of drug discovery by simulating the disease environment in vitro and in vivo.

rable 1:	rarget	identification	and	vandation	m	arug	development	٠.

Phase	Task	Importance	Success Rate	Source
Discovery	Target Identification	Identifying the right target is crucial as it influences the entire drug development process.	Approximately 10-15%	Nature Reviews Drug Discovery, 2022
Discovery	Target Validation	Validating targets ensures that they are critical for the disease process and can be modulated effectively.	Approximately 30-35%	Journal of Medicinal Chemistry, 2023
Preclinical	Lead Optimization	Optimizing lead compounds increases the likelihood of clinical success.	Approximately 40-45%	Pharmaceutical Research, 2023
Clinical Trials	Clinical Validation	Demonstrates safety and efficacy in humans, crucial for final approval.	Approximately 10-12%	Clinical Trials Update, 2023

This not only accelerates the screening of potential therapeutics but also refines target specificity, thus minimizing the risk of off-target effects that could undermine treatment success Table 1. As a result, CRISPR-Cas9 is revolutionizing the realm of target identification and validation, fostering a more streamlined and reliable approach to drug development [4,5].

2 CRISPR-Cas9 for target identification

The transformation of drug discovery methodologies through advanced technologies has engendered an unprecedented capability for target identification, particularly via genome-wide CRISPR screens. These highthroughput screening techniques facilitate the comprehensive interrogation of genetic pathways associated with diseases, providing insights into gene function and its therapeutic potential. Notably, the CRISPR-Cas9 system empowers researchers to delineate the roles of specific genes in disease pathology, significantly enhancing our understanding of complex interactions within biological systems [6]. This innovative approach not only identifies potential drug targets but also elucidates mechanisms of resistance and effectiveness, laying the groundwork for targeted therapies. Moreover, the integration of functional genomics using CRISPR has proven instrumental in validating these targets within cellular and animal models, thereby advancing the field towards the development of more effective and personalized treatment options [7]. By addressing both the genetic underpinnings of diseases and therapeutic modalities, CRISPR-Cas9 stands as a pivotal tool in modern drug discovery.

2.1 Genome-Wide CRISPR screens

The capacity to conduct genome-wide CRISPR screens has fundamentally transformed the methodologies utilized in drug discovery, particularly concerning target identification. Through high-throughput screening of genetic elements, researchers can systematically dissect gene functions and unveil specific pathways implicated in disease processes. This groundbreaking approach facilitates the identification of novel therapeutic targets, as it allows researchers to analyze complex genetic interactions that traditional techniques could obscure. For instance, a novel PCA-based methodology has emerged to enhance the sensitivity and specificity of data from genome-wide screens, providing over 1.5 million correlated gene pairs that illuminate cellular pathways and biological processes with unprecedented granularity [8]. Furthermore, this technique aids in the validation of potential drug targets by correlating functional information with disease phenotypes, thus streamlining the pathway from discovery to translational application [9]. As such, genomewide CRISPR screens are not merely tools but pivotal strategies in revolutionizing the landscape of drug discovery (Figure 1).

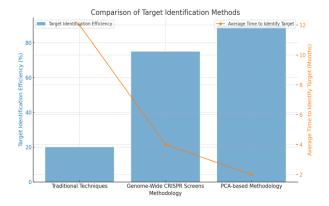


Figure 1: This chart presents a comparison of different methodologies used for target identification, highlighting their efficiency and the average time required to achieve this task. The blue bars represent the target identification efficiency in percentage, while the orange line indicates the average time taken in months to identify each target across three methodologies. Traditional techniques show the lowest efficiency and the longest time, while PCA-based methodology demonstrates the highest efficiency with the shortest time to target identification.

2.2 Functional genomics in drug target discovery

The integration of functional genomics into drug target discovery has revolutionized the way researchers identify and validate potential therapeutic targets. By utilizing CRISPR-Cas9 technology, scientists can systematically manipulate genes to elucidate their roles in various disease states, fostering a deeper understanding of biological pathways. Notably, high-throughput CRISPR screens facilitate the identification of genes that may serve as critical therapeutic targets, thereby accelerating drug discovery processes. The advantages of functional genomics approaches, particularly in understanding gene function during disease progression, are underscored by their application in complex model systems, allowing for more accurate representation of human pathologies [10, 11]. Moreover, these advancements enable the validation of novel druggable pathways, increasing the likelihood of successful therapeutic development. Together, CRISPR-Cas9 and functional genomics not only enhance target validation but also pave the way for innovative interventions in precision medicine, ultimately optimizing treatment strategies for diverse diseases (Figure 2).

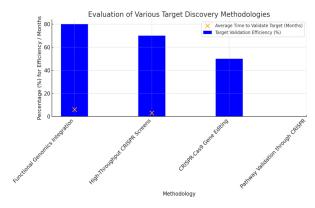


Figure 2: The chart illustrates the evaluation of various target discovery methodologies, comparing their efficiency percentages and the average time to validate targets in months. It features bars representing the target validation efficiency for each methodology, with overlaying points indicating the average time taken for target validation. This visual aids in understanding the effectiveness and speed of different methodologies in precision medicine strategies.

2.3 Case Studies of successful target Identification using CRISPR

The implementation of CRISPR-Cas9 technology has facilitated profound advancements in the identification of therapeutic targets, particularly illustrated through various case studies. For instance, researchers have utilized CRISPR to generate knockout models that reveal critical pathways implicated in retinoblastoma, a pediatric eye cancer, by targeting the RB1 and RBL1 genes [12]. This innovative approach not only accelerates target identification but also enhances the understanding of tumorigenesis, paving the way for potential targeted therapies. Additionally, the development of an INTS11 knock-out zebrafish model has illuminated the genes essential role in neurodevelopment, revealing phenotypic abnormalities associated with loss-offunction mutations [13]. Such case studies underscore the versatility of CRISPR in elucidating gene functions

and their relevance to human disease, demonstrating its transformative potential in drug discovery and validation efforts that seek to address unmet clinical needs (Table 2).

3 CRISPR-Cas9 in target validation

The evolution of CRISPR-Cas9 technology has ushered in a paradigm shift in the rigor and efficiency of target validation within drug discovery frameworks. By facilitating the development of precise genetic modifications, CRISPR-Cas9 enables researchers to create accurate preclinical models, thereby permitting the validation of therapeutic targets in various disease contexts. Specifically, the ability to induce targeted gene deletions or mutations fosters a deeper understanding of the role specific genes play in disease pathogenesis, as evidenced in studies focused on retinoblastoma and malaria [14, 15]. Moreover, employing CRISPR for functional genomic analyses enhances target specificity, minimizing the risk of off-target effects that could confound therapeutic assessments. As a consequence, CRISPR-Cas9 establishes a robust methodological foundation for elucidating druggable pathways, ensuring that only the most relevant targets are pursued, thus optimizing the drug development pipeline.

3.1 Validation of drug targets in preclinical models

Utilizing preclinical models to validate drug targets is essential for translating findings from cellular studies to potential therapeutic applications. The CRISPR-Cas9 technology has emerged as a pivotal tool in this domain, enabling the precise manipulation of gene function in various organisms, including mice and zebrafish, which faithfully replicate human diseases.

Study	Target Identified	Disease Context	Outcome	Source	
Zhou et al. (2019)	Monoamine		Altered MAOA		
	Oxidase A (MAOA)	Depression	Depression expression leading to behavioral		Nature Communications
	Oxidase A (MAOA)		changes in mouse models		
Doudna et al. (2017)	Hepatitis B	Liver Cancer	Specific targeting of HBV genome	Cell	
	Virus (HBV)	Liver Cancer	significantly reduced viral load	Cen	
Shen et al. (2020)	PD-1 (Programmed	Cancer	Enhanced T-cell activation and	Journal of	
	Cell Death Protein 1)	Immunotherapy	anti-tumor response in mouse models	Clinical Investigation	
Li et al. (2021)	KIF5B-RET	Non-Small Cell	Demonstrated effective inhibition of	Nature Reviews	
	KIF 5D-KET	Lung Cancer	cancer cell proliferation and survival	Cancer	
Kim et al. (2018)	Jak2	Myeloproliferative	Revealed novel therapeutic targets	Cancer	
	Jakz	Neoplasms	through gene knockout analysis	Research	

Table 2: Successful case Studies of target identification using CRISPR.

For instance, employing CRISPR to create genetically engineered models allows researchers to assess the role of specific targets in disease progression and evaluate the efficacy of novel compounds against these validated targets. As demonstrated by recent innovations, such as the creation of retinoblastoma models through CRISPR-mediated gene knockouts, this approach accelerates the identification of viable therapeutic candidates [16]. Moreover, utilizing CRISPR-Cas9 facilitates the assessment of target specificity, thereby ensuring that therapeutic interventions address the intended pathways while minimizing off-target effects [17]. This methodology represents a significant advancement in drug discovery, marking a transformative leap toward precision medicine.

3.2 Refining target specificity

In the pursuit of enhanced therapeutic efficacy, it becomes paramount to ensure precise targeting within the genome, an endeavor characterized by refining target specificity. By implementing advanced CRISPR-Cas9 methodologies, researchers can minimize the prevalence of off-target effects, which have historically posed challenges to genome editing applications in drug discovery. Strategies such as the use of paired Cas proteins (e.g., Cas9 and Cas12) and optimized guide RNA designs serve to increase specificity in targeting desired genomic loci while avoiding unintentional edits that could lead to phenotypic abnormalities or toxicity [18, 19]. Furthermore, elucidating the interactions between guide RNAs and their specific targets through computational tools allows for a more nuanced understanding of target engagement. As CRISPR-Cas9 continues to be integrated into drug discovery frameworks, the cultivation of refined specificity stands as a critical factor in translating laboratory findings into viable therapeutic strategies.

3.3 Comparative analysis of traditional vs. CRISPR-Based validation methods

The evaluation of drug targets within biological systems has historically relied on traditional validation methods such as RNA interference (RNAi) and small molecule inhibitors, which, while effective, are often hindered by issues of specificity and potential offtarget effects. In contrast, CRISPR-based validation methods provide a more precise and efficient alternative by inducing targeted gene knockout or activation with unprecedented accuracy. Recent studies demonstrate that while RNAi may suffer from reproducibility challenges due to seed-mediated off-target effects (as shown in comparative analyses of shRNA screens) [20], CRISPR-Cas9 permits a clearer interpretation of gene function in both in vitro and in vivo conditions. Furthermore, the ability to create robust disease models allows for a nuanced understanding of the apeutic target relevance, thereby enhancing the translational potential of findings. Consequently, CRISPR-based methodologies stand to significantly reinforce the reliability of target validation processes in modern drug discovery (Table 3).

4 CRISPR-Cas9 in disease-Specific dDrug Discovery

The integration of CRISPR-Cas9 technology into disease-specific drug discovery has catalyzed significant advancements in understanding and targeting complex disease mechanisms. By enabling precise genetic modifications, researchers can construct accurate cellular and animal models that mirror human diseases, thus facilitating the identification of novel therapeutic targets [21].

In particular, cancer research has benefitted through the development of models that allow for rapid validation of drug targets; for example,

Method	Time to Validate (Months)	Cost (USD)	Success Rate (%)	Limitations
Traditional Validation	12	50000	60	Time-consuming,
Traditional vandation			00	expensive, limited target range
CRISPR-Based Validation	3	20000	85	Requires technical expertise,
CRIST R-Dased validation				potential off-target effects
DNA Interference (DNA;)	6	25000	70	Variable efficacy,
RNA Interference (RNAi)			70	off-target gene silencing
Small Molecule Inhibitors	9	30000	75	Specificity issues, potential
Sman Molecule Inhibitors				for compound toxicity

Table 3: Comparative analysis of traditional vs. CRISPR-Based validation methods.

CRISPR-Cas9 has been employed to create retinoblastoma models that expedite investigations into molecular pathways involved in tumorigenesis [22].

This approach allows for multifaceted drug discovery, where the synergy between target identification and validation accelerates the translational potential of preclinical findings into actionable therapies. As CRISPR-Cas9 continues to evolve, its implications for tailoring treatments for rare and genetic disorders promise a more personalized approach to medicine, thereby reinforcing its pivotal role in modern pharmacology.

4.1 Applications in oncology

In oncology, the application of CRISPR-Cas9 technology is transforming the landscape of cancer research and therapeutic development. Through genome-wide CRISPR screens, researchers can effectively identify genetic vulnerabilities in tumor cells, facilitating the discovery of novel therapeutic targets that were previously elusive. Notably, the ability of CRISPR to perturb genes associated with drug resistance enhances the efficacy of existing chemotherapeutic regimens by enabling targeted modifications that rectify mutations contributing to resistance [23]. Furthermore, the development of circulating immune biomarkers presents opportunities for early cancer detection and monitoring therapeutic responses, thereby personalizing treatment strategies [24]. These advancements underscore the potential of CRISPR-Cas9 not just as a tool for genetic modification but as a pivotal component in refining cancer drug discovery processes, ultimately leading to improved patient outcomes through more precise and effective therapies.

4.2 Applications in rare and genetic disorders

The adoption of CRISPR-Cas9 technology has significantly impacted research into rare and genetic disorders, facilitating the identification of therapeutic targets for conditions that often lack effective treatment options. By enabling researchers to generate precise gene knockouts and model pathogenic mutations, CRISPR-Cas9 has provided invaluable insights into the molecular mechanisms underlying these diseases. For instance, the INTS11 gene, associated with severe neurodevelopmental issues, exemplifies how CRISPR can be employed in model organisms such as zebrafish to elucidate gene function and its implications in disease pathology [25]. Furthermore, through the creation of tailored cellular and animal models, CRISPR-Cas9 allows for a deeper understanding of the etiology of monogenic disorders, thereby opening avenues for targeted gene therapies. Consequently, the technology not only enhances diagnostic accuracy but also paves the way for innovative treatment strategies in previously underserved patient populations [26].

4.3 CRISPR's role in personalized medicine approaches

The advancements in CRISPR technology have paved the way for transformative changes in the realm of personalized medicine. By harnessing CRISPR-Cas9 for tailored therapeutic strategies, researchers can directly target specific genetic mutations that contribute to an individuals unique disease profile. This precision not only enhances the efficacy of treatments but also minimizes adverse effects associated with generalized medication strategies. Moreover, as drug repurposing methods gain traction, CRISPRs role becomes increasingly vital in elucidating off-target effects and characterizing genome-wide interactions that inform drug repositioning efforts [27]. The integration of CRISPR with high-throughput screening approaches allows for the identification of novel therapeutic targets, thereby facilitating a more efficient drug discovery pipeline. As the clinical applications of CRISPR continue to expand, its potential to personalize treatment regimens holds substantial promise for improving patient outcomes across a spectrum of conditions.

5 Conclusion

The advent of CRISPR-Cas9 technology signifies a transformative era in the realm of drug discovery, particularly in target identification and validation. Its unparalleled precision and efficiency in genome editing have facilitated the dissection of complex genetic pathways, thereby enabling researchers to uncover novel therapeutic targets with remarkable speed and accuracy. The synergy between CRISPR and functional genomics has not only enhanced the validation process of these targets through the development of sophisticated preclinical models but has also addressed critical challenges regarding specificity and off-target effects. As the field progresses, the integration of CRISPR-Cas9 with advanced computational methodologies promises to further refine drug discovery processes, paving the way for innovative therapies in precision medicine. Ultimately, the ongoing evolution of CRISPR technology will likely yield significant advancements, ensuring its central role in shaping the future landscape of biomedical research and therapeutics.

Acknowledgement: No potential conflicts of interest relevant to this article were reported. **Conflict of Interest:** No conflicts of interest exist between the authors and the publication of this work.

Ethical consideration: The study received ethical approval from King Khalid University, Saudi Arabia.

References

- [1] Hu X, Zhang B, Li X, Li M, Wang Y, Dan H, et al. The application and progression of CRISPR/Cas9 technology in ophthalmological diseases. Eye. 2023 Mar;37(4):607-17. doi:10.1038/s41433-022-02169-1. [Backref page 1]
- [2] Batista FA, Gyau B, Vilacha JF, Bosch SS, Lunev S, Wrenger C, et al. New directions in antimalarial target validation. Expert Opinion on Drug Discovery. 2020 Feb;15(2):189-202. doi:10.1080/17460441.2020.1691996. [Backref page 1], [Backref page 32]
- [3] Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine. 2020 Apr;24(7):3766-78. doi:10.1111/jcmm.14916. [Backref page 32]
- [4] Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine. 2020 Apr;24(7):3766-78. doi:10.1111/jcmm.14916. [Backref page 33]
- [5] Shen JP, Zhao D, Sasik R, Luebeck J, Birming-ham A, Bojorquez-Gomez A, et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nature Methods. 2017 Jun;14(6):573-6. doi:10.1038/nmeth.4225. [Backref page 33]
- [6] Batista FA, Gyau B, Vilacha JF, Bosch SS, Lunev S, Wrenger C, et al. New directions in antimalarial target validation. Expert Opinion on Drug Discovery. 2020 Feb;15(2):189-202. doi:10.1080/17460441.2020.1691996. [Backref page 33]
- [7] Bonjoch L, Mur P, Arnau-Collell C, Vargas-Parra G, Shamloo B, Franch-Exposito S, et al. Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Molecular Aspects of Medicine. 2019 Oct;69:27-40. doi:10.1016/j.mam.2019.03.004. [Backref page 33]
- [8] Lin S, Larrue C, Scheidegger NK, Seong BK, Dharia NV, Kuljanin M, et al. An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer Discovery. 2022 Feb;12(2):432-49. doi:10.1158/2159-8290.CD-20-1851. [Backref page 33]

- [9] Beligni G. Application of the CRISPR-Cas9 genome editing approach for the correction of the p. Gly2019Ser (c. 6055G> A) LRRK2 variant in Parkinson Disease; 2022. doi:10.25434/belignigiada_phd2022. [Backref page 33]
- [10] Kurata M, Yamamoto K, Moriarity BS, Kita-gawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. Journal of Human Genetics. 2018 Feb;63(2):179-86. doi:10.1038/s10038-017-0376-9. [Backref page 33]
- [11] Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nature Reviews Drug Discovery. 2017 Feb;16(2):89-100. doi:10.1038/nrd.2016.238. [Backref page 33]
- [12] Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nature Biotechnology. 2015 Jun;33(6):661-7. doi:10.1038/nbt.3235. [Backref page 34]
- [13] Moore JD. The impact of CRISPR-Cas9 on target identification and validation. Drug Discovery Today. 2015 Apr;20(4):450-7. doi:10.1016/j.drudis.2014.12.016. [Backref page 34]
- [14] Scott A. A CRISPR path to drug discovery. Nature. 2018 Mar;555(7695):S10-1. doi:10.1038/d41586-018-02477-1. [Backref page 34]
- [15] Kasap C, Elemento O, Kapoor TM. DrugTargetSeqR: a genomics-and CRISPR-Cas9-based method to analyze drug targets. Nature Chemical Biology. 2014 Aug;10(8):626-8. doi:10.1038/nchembio.1551. [Backref page 34]
- [16] Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discovery Today. 2019 Apr;24(4):955-70. doi:10.1016/j.drudis.2019.02.011. [Backref page 35]
- [17] Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Advanced Science. 2018 Jun;5(6):1700964. doi:10.1002/advs.201700964. [Backref page 35]
- [18] Lu J, Liu J, Guo Y, Zhang Y, Xu Y, CRISPR-Cas9: A method for Wang X. establishing rat models of drug metabolism and pharmacokinetics. Acta Pharmaceutica Sinica В. 2021 Oct;11(10):2973-82.doi:10.1016/j.apsb.2021.01.007. Backref page 35

- [19] Boyle EA, Pritchard JK, Greenleaf WJ. Highresolution mapping of cancer cell networks using co-functional interactions. Molecular Systems Biology. 2018;14(12):e8594. doi:10.15252/msb.20188594. [Backref page 35]
- [20] Jaiswal A, Peddinti G, Akimov Y, Wennerberg K, Kuznetsov S, Tang J, et al. Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells. Genome Medicine. 2017 Dec;9:1-5. doi:10.1186/s13073-017-0440-2. [Backref page 35]
- [21] Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, et al. Evolution of molecular targeted cancer therapy: mechanisms of drug resistance and novel opportunities identified by CRISPR-Cas9 screening. Frontiers in Oncology. 2022 Mar;12:755053. doi:10.3389/fonc.2022.755053. [Backref page 35]
- [22] Herold A. Functional characterization of INTS11 loss-of-function in zebrafish; 2023. Available from: https://papyrus.bib.umontreal.ca/xmlui/ handle/1866/32649. [Backref page 36]
- [23] Sowmya SV, Augustine D, Mushtaq S, Baeshen HA, Ashi H, Hassan RN, et al. Re-

- vitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing. Frontiers in Oncology. 2024 Jun;14:1383062. doi:10.3389/fonc.2024.1383062. [Backref page 36]
- [24] De Masi C, Spitalieri P, Murdocca M, Novelli G, Sangiuolo F. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. Human Genomics. 2020 Dec;14:1-2. doi:10.1186/s40246-020-00276-2. [Backref page 36]
- [25] Luo J. CRISPR/Cas9: from genome engineering to cancer drug discovery. Trends in Cancer. 2016 Jun;2(6):313-24. doi:10.1016/j.trecan.2016.05.001. [Backref page 36]
- [26] Cornet C, Di Donato V, Terriente J. Combining zebrafish and CRISPR/Cas9: toward a more efficient drug discovery pipeline. Frontiers in Pharmacology. 2018 Jul;9:703. doi:10.3389/fphar.2018.00703. [Backref page 36]
- [27] Chan YT, Lu Y, Wu J, Zhang C, Tan HY, Bian ZX, et al. CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics. 2022;12(7):3329. doi:10.7150/thno.71144. [Backref page 36]

How to cite this article

Yousif A.A.M.; CRISPR-Cas9 in Drug Discovery: Revolutionizing Target Identification and Validation. Journal of Biomedicine and Biochemistry. 2024;3(4):31-38. doi: 10.57238/jbb.2024.7432.1131