Main Article Content
Abstract
Hospital wastewater systems are recognized as reservoirs for the emergence and dissemination of antibiotic-resistant bacteria. This study isolated bacterial strains from hospital effluents and assessed their resistance profiles using disk diffusion and minimum inhibitory concentration (MIC) methods. Molecular characterization via PCR and sequencing identified genes associated with resistance, including blaCTX-M, mecA, and vanA. High prevalence of multidrug-resistant strains such as MRSA and ESBL-producing Enterobacteriaceae was observed. These findings highlight the urgent need for improved wastewater treatment processes and strict antimicrobial stewardship to prevent environmental and public health risks.
Article Details
How to Cite
References
- GalardeLópez M, VelazquezMeza ME, BobadilladelValle M, CornejoJuárez P, CarrilloQuiroz BA, PoncedeLeón A, SassoéGonzález A, SaturnoHernández P, AlpucheAranda CM. Antimicrobial resistance patterns and clonal distribution of Escherichia coli, Enterobacter spp. and Acinetobacter spp. strains isolated from two hospital wastewater plants. Antibiotics (Basel). 2022;11(5):601, Doi: https://doi.org/10.3390/antibiotics11050601.
- Aslam B, Asghar R, Muzammil S, Shafique M, Siddique AB, Khurshid M, et al. AMR and sustainable development goals: at a crossroads. Glob Health. 2024 Oct 17;20(1):73. Doi: https://doi.org/10.1186/s12992-024-01046-8.
- EFSA Panel on Biological Hazards (BIOHAZ), Allende A, Álvarez‐Ordóñez A, Bortolaia V, Bover‐Cid S, De Cesare A, et al. Occurrence and spread of carbapenemase‐producing Enterobacterales (CPE) in the food chain in the EU/EFTA. Part 1: 2025 update. EFSA J. 2025 Apr;23(4):e09336.DOI: https://doi.org/10.2903/j.efsa.2025.9336.
- Peirano G, Pitout JD. Extended-spectrum β-lactamase-producing Enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs. 2019 Sep;79(14):1529–41.Doi: https://doi.org/10.1007/s40265-019-01180-3.
- Galarde-López M, Velazquez-Meza ME, Bobadilla-del-Valle M, Cornejo-Juárez P, Carrillo-Quiroz BA, Ponce-de-León A, et al. Antimicrobial resistance patterns and clonal distribution of Escherichia coli, Enterobacter spp. and Acinetobacter spp. strains isolated from two hospital wastewater plants. Antibiotics. 2022 Apr 29;11(5):601. Doi: https://doi.org/10.3390/antibiotics11050601.
- McCarthy B, Apori SO, Giltrap M, Bhat A, Curtin J, Tian F. Hospital effluents and wastewater treatment plants: a source of oxytetracycline and antimicrobial-resistant bacteria in seafood. Sustainability. 2021 Dec 17;13(24):13967. DOI: https://doi.org/10.3390/su132413967.
- Kaur R, Yadav B, Tyagi RD. Microbiology of hospital wastewater. In: Pandey A, Chang JS, Soccol CR, Lee DJ, editors. Current developments in biotechnology and bioengineering. 1st ed. Amsterdam: Elsevier; 2020. p. 103–48. Elsevier. Doi: https://doi.org/10.1016/B978-0-12-819722-6.00004-3
- Galarde-López M, Velazquez-Meza ME, Bobadilla-del-Valle M, Cornejo-Juárez P, Carrillo-Quiroz BA, Ponce-de-León A, et al. Antimicrobial resistance patterns and clonal distribution of Escherichia coli, Enterobacter spp. and Acinetobacter spp. strains isolated from two hospital wastewater plants. Antibiotics. 2022 Apr 29;11(5):601. Doi: https://doi.org/10.3390/antibiotics11050601.
- Galarde-López M, Velazquez-Meza ME, Godoy-Lozano EE, Carrillo-Quiroz BA, Cornejo-Juárez P, Sassoé-González A, et al. Presence and persistence of ESKAPEE bacteria before and after hospital wastewater treatment. Microorganisms. 2024 Jun 19;12(6):1231. Doi: https://doi.org/10.3390/microorganisms12061231.
- Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther. 2022 Aug 3;20(8):1095–108. Doi: https://doi.org/10.1080/14787210.2022.2078308.
- Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, et al. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: a comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ. 2022 May 15;821:153472.. Doi: https://doi.org/10.1016/j.scitotenv.2022.153472.
- Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist. 2021 Dec 1;27:101–11. Doi: https://doi.org/10.1016/j.jgar.2021.08.001.
- Zhu L, Lin X, Di Z, Cheng F, Xu J. Occurrence, risks, and removal methods of antibiotics in urban wastewater treatment systems: a review. Water. 2024 Nov 28;16(23):3428.. Doi: https://doi.org/org/10.3390/w16233428.
- Gaidulu D, Gupta B, Gupta AK, Ghosal PS. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: special emphasis on biological treatment based hybrid systems. J Environ Chem Eng. 2021;9:105282.. DOI: https://doi.org/10.1016/j.jece.2021.105282.
- Davis CB, Keenum I, Calarco J, Liguori K, et al. Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: a critical review of trends across studies. 2022. Doi: https://doi.org/10.1016/j.wroa.2022.100161
- Cho S, Jackson CR, Frye JG. The prevalence and antimicrobial resistance phenotypes of Salmonella, Escherichia coli and Enterococcus sp. in surface water. Lett Appl Microbiol. 2020 Jul 1;71(1):3–25.Doi: https://doi.org/10.1111/lam.13301.
- Triggiano F, Calia C, Diella G, Montagna MT, De Giglio O, Caggiano G. The role of urban wastewater in the environmental transmission of antimicrobial resistance: the current situation in Italy (2010–2019). Microorganisms. 2020 Oct 12;8(10):1567. Doi: https://doi.org/10.3390/microorganisms8101567.
- Triggiano F, Calia C, Diella G. The role of urban wastewater in the environmental transmission of antimicrobial resistance: the current situation in Italy (2010–2019). Microorganisms [Internet]. 2020;8:1567. Doi: https://doi.org/10.3390/microorganisms8101567
- Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: a growing serious threat for globa. Doi: https://doi.org/10.3390/healthcare11131946
- Aljeldah MM. Antimicrobial resistance and its spread is a global threat. Antibiotics. 2022 Aug 9;11(8):1082. Aljeldah MM. Antimicrobial resistance and its spread is a global threat. Antibiotics. 2022 Aug 9;11(8):1082. Doi: https://doi.org/10.3390/antibiotics11081082.
- Chowdhury AMA, Uddin KN. Analysis of the occurrence of antibiotic resistant bacteria in the hospital’s effluent and its receiving environment. 2022.Doi: https://doi.org/10.1177/11786361221078211.
- Addae-Nuku SD, Kotey FCN, Dayie NTKD, Osei MM, et al. Multidrug-resistant bacteria in hospital wastewater of the Korle Bu Teaching Hospital in Accra, Ghana. 2022. Doi: https://doi.org/10.1177/11786302221130613.
- Yakobi SH. The level and persistence of antibiotic resistant strains of bacteria in wastewater before, during and after treatment at a municipal wastewater treatment plant in Stellenbosch. 2015, http://hdl.handle.net/20.500.11838/2237
- Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms. 2019 Jun 22;7(6):180. Doi: https://doi.org/10.3390/microorganisms7060180
- Barathe P, Kaur K, Reddy S, Shriram V, Kumar V. Antibiotic pollution and associated antimicrobial resistance in the environment. J Hazard Mater Lett. 2024 Mar 8;100105. https://doi.org/10.1016/j.hazl.2024.100105.
- Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water. 2020 Nov 25;12(12):3313. Doi: https://doi.org/10.3390/w12123313
- Chandja WB, Onanga R, Nguema PP, Lendamba RW, Mouanga-Ndzime Y, Mavoungou JF, Godreuil S. Emergence of antibiotic residues and antibiotic-resistant bacteria in hospital wastewater: a potential route of spread to African streams and rivers, a review. Water. 2024 Nov 6;16(22):3179. Doi:https://doi.org/10.3390/w16223179
- Evoung Chandja WB, Onanga R, Mbehang Nguema PP, Lendamba RW, Mouanga-Ndzime Y, Mavoungou JF, Godreuil S. Emergence of antibiotic residues and antibiotic-resistant bacteria in hospital wastewater: a potential route of spread to African streams and rivers, a review. Water. 2024 Nov 6;16(22): 3179.Doi: https://doi.org/10.3390/w16223179
- Ramírez-Coronel AA, Mohammadi MJ, Majdi HS, Zabibah RS, Taherian M, Prasetio DB, Gabr GA, Asban P, Kiani A, Sarkohaki S. Hospital wastewater treatment methods and its impact on human health and environments. Rev Environ Health. 2024 Sep 1;39(3):423–34. Doi:https://doi.org/10.1515/reveh-2022-0216
- Thakali A. Does circularizing source-separated food waste present a risk to our food? [dissertation]. University of Maine; 2020.
- Regasa BD, Girma E, Tesfaye M, Seid M. Assessment of the bacteriological profile and antibiotic susceptibility patterns of wastewater in health facilities of Ethiopia. 2021. Doi:https://doi.org/10.1155/2021/9969479.
- Díaz-Palafox G, de Jesús Tamayo-Ordoñez Y, Bello-López JM, Ayil-Gutiérrez AB, et al. Regulation transcriptional of antibiotic resistance genes (ARGs) in bacteria isolated from WWTP. 2023. [Internet]. Available from: https://www.ncbi.nlm.nih.gov. Doi: https://doi.org/10.1007/s00284-023-03449-z.
- Larsson DJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022 May;20(5):257–69. Doi: https://doi.org/10.1038/s41579-021-00649-x
- Owojori GO, Lateef SA, Ana GR. Effectiveness of wastewater treatment plant at the removal of nutrients, pathogenic bacteria, and antibiotic-resistant bacteria in wastewater from hospital source. Environ Sci Pollut Res Int. 2024 Feb;31(7):10785–801.DOI: https://doi.org/10.1007/s11356-024-31829-w.
- Mutuku C. Antibiotic resistance profiles among enteric bacteria isolated from wastewater in septic tanks. 2017.
- Munzhelele EP, Mudzielwana R, Ayinde WB, Gitari WM. Pharmaceutical contaminants in wastewater and receiving water bodies of South Africa: a review of sources, pathways, occurrence, effects, and geographical distribution. Water. 2024 Mar 7;16(6):796. Doi: https://doi.org/10.3390/w16060796.
- Amador P, Fernandes R, Prudêncio C, Barreto MP, et al. Antibiotic resistance in wastewater: occurrence and fate of Enterobacteriaceae producers of class A and class C β-lactamases. 2014, Doi: https://doi.org/10.1080/10934529.2015.964602.
- Lépesová K, Olejníková P, Mackuľak T, Cverenkárová K, et al. Hospital wastewater—important source of multidrug resistant coliform bacteria with ESBL-production. 2020. Doi:https://doi.org/10.3390/ijerph17217827.
References
GalardeLópez M, VelazquezMeza ME, BobadilladelValle M, CornejoJuárez P, CarrilloQuiroz BA, PoncedeLeón A, SassoéGonzález A, SaturnoHernández P, AlpucheAranda CM. Antimicrobial resistance patterns and clonal distribution of Escherichia coli, Enterobacter spp. and Acinetobacter spp. strains isolated from two hospital wastewater plants. Antibiotics (Basel). 2022;11(5):601, Doi: https://doi.org/10.3390/antibiotics11050601.
Aslam B, Asghar R, Muzammil S, Shafique M, Siddique AB, Khurshid M, et al. AMR and sustainable development goals: at a crossroads. Glob Health. 2024 Oct 17;20(1):73. Doi: https://doi.org/10.1186/s12992-024-01046-8.
EFSA Panel on Biological Hazards (BIOHAZ), Allende A, Álvarez‐Ordóñez A, Bortolaia V, Bover‐Cid S, De Cesare A, et al. Occurrence and spread of carbapenemase‐producing Enterobacterales (CPE) in the food chain in the EU/EFTA. Part 1: 2025 update. EFSA J. 2025 Apr;23(4):e09336.DOI: https://doi.org/10.2903/j.efsa.2025.9336.
Peirano G, Pitout JD. Extended-spectrum β-lactamase-producing Enterobacteriaceae: update on molecular epidemiology and treatment options. Drugs. 2019 Sep;79(14):1529–41.Doi: https://doi.org/10.1007/s40265-019-01180-3.
Galarde-López M, Velazquez-Meza ME, Bobadilla-del-Valle M, Cornejo-Juárez P, Carrillo-Quiroz BA, Ponce-de-León A, et al. Antimicrobial resistance patterns and clonal distribution of Escherichia coli, Enterobacter spp. and Acinetobacter spp. strains isolated from two hospital wastewater plants. Antibiotics. 2022 Apr 29;11(5):601. Doi: https://doi.org/10.3390/antibiotics11050601.
McCarthy B, Apori SO, Giltrap M, Bhat A, Curtin J, Tian F. Hospital effluents and wastewater treatment plants: a source of oxytetracycline and antimicrobial-resistant bacteria in seafood. Sustainability. 2021 Dec 17;13(24):13967. DOI: https://doi.org/10.3390/su132413967.
Kaur R, Yadav B, Tyagi RD. Microbiology of hospital wastewater. In: Pandey A, Chang JS, Soccol CR, Lee DJ, editors. Current developments in biotechnology and bioengineering. 1st ed. Amsterdam: Elsevier; 2020. p. 103–48. Elsevier. Doi: https://doi.org/10.1016/B978-0-12-819722-6.00004-3
Galarde-López M, Velazquez-Meza ME, Bobadilla-del-Valle M, Cornejo-Juárez P, Carrillo-Quiroz BA, Ponce-de-León A, et al. Antimicrobial resistance patterns and clonal distribution of Escherichia coli, Enterobacter spp. and Acinetobacter spp. strains isolated from two hospital wastewater plants. Antibiotics. 2022 Apr 29;11(5):601. Doi: https://doi.org/10.3390/antibiotics11050601.
Galarde-López M, Velazquez-Meza ME, Godoy-Lozano EE, Carrillo-Quiroz BA, Cornejo-Juárez P, Sassoé-González A, et al. Presence and persistence of ESKAPEE bacteria before and after hospital wastewater treatment. Microorganisms. 2024 Jun 19;12(6):1231. Doi: https://doi.org/10.3390/microorganisms12061231.
Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther. 2022 Aug 3;20(8):1095–108. Doi: https://doi.org/10.1080/14787210.2022.2078308.
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, et al. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: a comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ. 2022 May 15;821:153472.. Doi: https://doi.org/10.1016/j.scitotenv.2022.153472.
Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist. 2021 Dec 1;27:101–11. Doi: https://doi.org/10.1016/j.jgar.2021.08.001.
Zhu L, Lin X, Di Z, Cheng F, Xu J. Occurrence, risks, and removal methods of antibiotics in urban wastewater treatment systems: a review. Water. 2024 Nov 28;16(23):3428.. Doi: https://doi.org/org/10.3390/w16233428.
Gaidulu D, Gupta B, Gupta AK, Ghosal PS. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: special emphasis on biological treatment based hybrid systems. J Environ Chem Eng. 2021;9:105282.. DOI: https://doi.org/10.1016/j.jece.2021.105282.
Davis CB, Keenum I, Calarco J, Liguori K, et al. Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: a critical review of trends across studies. 2022. Doi: https://doi.org/10.1016/j.wroa.2022.100161
Cho S, Jackson CR, Frye JG. The prevalence and antimicrobial resistance phenotypes of Salmonella, Escherichia coli and Enterococcus sp. in surface water. Lett Appl Microbiol. 2020 Jul 1;71(1):3–25.Doi: https://doi.org/10.1111/lam.13301.
Triggiano F, Calia C, Diella G, Montagna MT, De Giglio O, Caggiano G. The role of urban wastewater in the environmental transmission of antimicrobial resistance: the current situation in Italy (2010–2019). Microorganisms. 2020 Oct 12;8(10):1567. Doi: https://doi.org/10.3390/microorganisms8101567.
Triggiano F, Calia C, Diella G. The role of urban wastewater in the environmental transmission of antimicrobial resistance: the current situation in Italy (2010–2019). Microorganisms [Internet]. 2020;8:1567. Doi: https://doi.org/10.3390/microorganisms8101567
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: a growing serious threat for globa. Doi: https://doi.org/10.3390/healthcare11131946
Aljeldah MM. Antimicrobial resistance and its spread is a global threat. Antibiotics. 2022 Aug 9;11(8):1082. Aljeldah MM. Antimicrobial resistance and its spread is a global threat. Antibiotics. 2022 Aug 9;11(8):1082. Doi: https://doi.org/10.3390/antibiotics11081082.
Chowdhury AMA, Uddin KN. Analysis of the occurrence of antibiotic resistant bacteria in the hospital’s effluent and its receiving environment. 2022.Doi: https://doi.org/10.1177/11786361221078211.
Addae-Nuku SD, Kotey FCN, Dayie NTKD, Osei MM, et al. Multidrug-resistant bacteria in hospital wastewater of the Korle Bu Teaching Hospital in Accra, Ghana. 2022. Doi: https://doi.org/10.1177/11786302221130613.
Yakobi SH. The level and persistence of antibiotic resistant strains of bacteria in wastewater before, during and after treatment at a municipal wastewater treatment plant in Stellenbosch. 2015, http://hdl.handle.net/20.500.11838/2237
Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms. 2019 Jun 22;7(6):180. Doi: https://doi.org/10.3390/microorganisms7060180
Barathe P, Kaur K, Reddy S, Shriram V, Kumar V. Antibiotic pollution and associated antimicrobial resistance in the environment. J Hazard Mater Lett. 2024 Mar 8;100105. https://doi.org/10.1016/j.hazl.2024.100105.
Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water. 2020 Nov 25;12(12):3313. Doi: https://doi.org/10.3390/w12123313
Chandja WB, Onanga R, Nguema PP, Lendamba RW, Mouanga-Ndzime Y, Mavoungou JF, Godreuil S. Emergence of antibiotic residues and antibiotic-resistant bacteria in hospital wastewater: a potential route of spread to African streams and rivers, a review. Water. 2024 Nov 6;16(22):3179. Doi:https://doi.org/10.3390/w16223179
Evoung Chandja WB, Onanga R, Mbehang Nguema PP, Lendamba RW, Mouanga-Ndzime Y, Mavoungou JF, Godreuil S. Emergence of antibiotic residues and antibiotic-resistant bacteria in hospital wastewater: a potential route of spread to African streams and rivers, a review. Water. 2024 Nov 6;16(22): 3179.Doi: https://doi.org/10.3390/w16223179
Ramírez-Coronel AA, Mohammadi MJ, Majdi HS, Zabibah RS, Taherian M, Prasetio DB, Gabr GA, Asban P, Kiani A, Sarkohaki S. Hospital wastewater treatment methods and its impact on human health and environments. Rev Environ Health. 2024 Sep 1;39(3):423–34. Doi:https://doi.org/10.1515/reveh-2022-0216
Thakali A. Does circularizing source-separated food waste present a risk to our food? [dissertation]. University of Maine; 2020.
Regasa BD, Girma E, Tesfaye M, Seid M. Assessment of the bacteriological profile and antibiotic susceptibility patterns of wastewater in health facilities of Ethiopia. 2021. Doi:https://doi.org/10.1155/2021/9969479.
Díaz-Palafox G, de Jesús Tamayo-Ordoñez Y, Bello-López JM, Ayil-Gutiérrez AB, et al. Regulation transcriptional of antibiotic resistance genes (ARGs) in bacteria isolated from WWTP. 2023. [Internet]. Available from: https://www.ncbi.nlm.nih.gov. Doi: https://doi.org/10.1007/s00284-023-03449-z.
Larsson DJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022 May;20(5):257–69. Doi: https://doi.org/10.1038/s41579-021-00649-x
Owojori GO, Lateef SA, Ana GR. Effectiveness of wastewater treatment plant at the removal of nutrients, pathogenic bacteria, and antibiotic-resistant bacteria in wastewater from hospital source. Environ Sci Pollut Res Int. 2024 Feb;31(7):10785–801.DOI: https://doi.org/10.1007/s11356-024-31829-w.
Mutuku C. Antibiotic resistance profiles among enteric bacteria isolated from wastewater in septic tanks. 2017.
Munzhelele EP, Mudzielwana R, Ayinde WB, Gitari WM. Pharmaceutical contaminants in wastewater and receiving water bodies of South Africa: a review of sources, pathways, occurrence, effects, and geographical distribution. Water. 2024 Mar 7;16(6):796. Doi: https://doi.org/10.3390/w16060796.
Amador P, Fernandes R, Prudêncio C, Barreto MP, et al. Antibiotic resistance in wastewater: occurrence and fate of Enterobacteriaceae producers of class A and class C β-lactamases. 2014, Doi: https://doi.org/10.1080/10934529.2015.964602.
Lépesová K, Olejníková P, Mackuľak T, Cverenkárová K, et al. Hospital wastewater—important source of multidrug resistant coliform bacteria with ESBL-production. 2020. Doi:https://doi.org/10.3390/ijerph17217827.
