Main Article Content

Abstract

Heavy metals such as lead, mercury, arsenic, and cadmium are ubiquitous environmental contaminants that pose significant health hazards. These metals disrupt normal cellular processes by inducing oxidative stress, lipid peroxidation, and DNA damage. On the molecular level, they interfere with enzymatic functions, disrupt calcium homeostasis, and trigger apoptosis or necrosis. Chronic exposure is linked to carcinogenesis, neurotoxicity, nephrotoxicity, and endocrine dysfunctions. This review examines the cellular and molecular mechanisms underlying heavy metal toxicity, highlighting recent findings on oxidative stress pathways, mitochondrial dysfunction, and inflammatory responses. It also discusses current strategies for detoxification and the role of chelation therapy. Better understanding these mechanisms is vital for developing preventive measures and therapeutic interventions to mitigate toxic effects.

Keywords

Heavy metals oxidative stress apoptosis toxicology DNA damage

Article Details

How to Cite
1.
Ameera Jasim Al-Aaraji Oudah, Ruwaida Wahab Salman AL-Jebory, Ahmed Hasan R. Al.Zurfi, Jasim HM. Mechanisms of Heavy Metal Toxicity at the Cellular, Molecular and General Health Levels. JBB [Internet]. 2025 Jun. 30 [cited 2025 Oct. 16];4(2):98-123. Available from: https://biomedbiochem.nabea.pub/biomedbiochem/article/view/104

How to Cite

1.
Ameera Jasim Al-Aaraji Oudah, Ruwaida Wahab Salman AL-Jebory, Ahmed Hasan R. Al.Zurfi, Jasim HM. Mechanisms of Heavy Metal Toxicity at the Cellular, Molecular and General Health Levels. JBB [Internet]. 2025 Jun. 30 [cited 2025 Oct. 16];4(2):98-123. Available from: https://biomedbiochem.nabea.pub/biomedbiochem/article/view/104

References

  1. Mitra S, Chakraborty AJ, Tareq AM, et al. Impact of Heavy Metals on the Environment and Human health: Novel Therapeutic Insights to Counter the Toxicity. Journal of King Saud University - Science. 2022;34(3):101865. doi:https://doi.org/10.1016/j.jksus.2022.101865.
  2. Merian E. Toxicity of heavy metals in the environment. Chemosphere. 1980;9(2):N8-N9. doi:https://doi.org/10.1016/0045-6535(80)90104-6.
  3. Jomová K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology. 2023;97(10). doi:https://doi.org/10.1007/s00204-023-03562-9.
  4. Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, Von Zglinicki T. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009;8(3):311-323. doi:https://doi.org/10.1111/j.1474-9726.2009.00481.x
  5. Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants. 2024;13(1):76. doi:https://doi.org/10.3390/antiox13010076
  6. Barbosa F. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology. Journal of Toxicology and Environmental Health, Part A. 2017;80(3):137-144. doi:https://doi.org/10.1080/15287394.2016.1259475
  7. De Mattia G, Bravi MC, Laurenti O, et al. Impairment of cell and plasma redox state in subjects professionally exposed to chromium. American Journal of Industrial Medicine. 2004;46(2):120-125. doi:https://doi.org/10.1002/ajim.20044
  8. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology. 2021;12(643972). doi:https://doi.org/10.3389/fphar.2021.643972
  9. Ghorbani A, Abolghassem Emamverdian, Necla Pehlivan, Meisam Zargar, Seyed Mehdi Razavi, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. Journal of nanobiotechnology. 2024;22(1). doi:https://doi.org/10.1186/s12951-024-02371-1
  10. Ijomone OK, Ukwubile II, Aneke VO, et al. Glial Perturbation in Metal Neurotoxicity: Implications for Brain Disorders. Neuroglia. 2025;6(1):4-4. doi:https://doi.org/10.3390/neuroglia6010004
  11. Rubino F. Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms. Toxics. 2015;3(1):20-62. doi:https://doi.org/10.3390/toxics3010020
  12. Briffa J, Sinagra E, Blundell R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon. 2020;6(9):e04691. doi:https://doi.org/10.1016/j.heliyon.2020.e04691
  13. Abd Elnabi MK, Elkaliny NE, Elyazied MM, et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics. 2023;11(7):580. doi:https://doi.org/10.3390/toxics11070580
  14. de Assis Araujo MS, Froes-Asmus CIR, de Figueiredo ND, et al. Prenatal Exposure to Metals and Neurodevelopment in Infants at Six Months: Rio Birth Cohort Study of Environmental Exposure and Childhood Development (PIPA Project). International Journal of Environmental Research and Public Health. 2022;19(7):4295. doi:https://doi.org/10.3390/ijerph19074295
  15. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology. 2014;7(2):60-72. doi:https://doi.org/10.2478/intox-2014-0009
  16. Amin SB, Myers G, Wang H. Association between neonatal iron overload and early human brain development in premature infants. Early Human Development. 2012;88(8):583-587. doi:https://doi.org/10.1016/j.earlhumdev.2011.12.030
  17. Cirovic A, Aleksandar Cirovic, Supabhorn Yimthiang, Vesey DA, Soisungwan Satarug. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters. Biomolecules. 2024;14(6):650-650. doi:https://doi.org/10.3390/biom14060650
  18. Mansoor S, Ali A, Kour N, et al. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants. 2023;12(16):3003-3003. doi:https://doi.org/10.3390/plants12163003
  19. Laviola L, Natalicchio A, Giorgino F. The IGF-I signaling pathway. Current Pharmaceutical Design. 2007;13(7):663-669. doi:https://doi.org/10.2174/138161207780249146
  20. Dai Y, Xu X, Huo X, Joost, Faas MM. Differential effect of lead and cadmium on mitochondrial function and NLRP3 inflammasome activation in human trophoblast. The Journal of Physiology. Published online August 28, 2024. doi:https://doi.org/10.1113/jp286755
  21. Calderón‐Garcidueñas L, D’Angiulli A, Kulesza RJ, et al. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials. International Journal of Developmental Neuroscience. 2011;29(4):365-375. doi:https://doi.org/10.1016/j.ijdevneu.2011.03.007
  22. Ilyas K, Iqbal H, Muhammad, Rehman K, Hussain A. Heavy metal exposure and metabolomics analysis: an emerging frontier in environmental health. Environmental Science and Pollution Research. 2024;31(26):37963-37987. doi:https://doi.org/10.1007/s11356-024-33735-7
  23. Korotkov SM. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. International Journal of Molecular Sciences. 2023;24(19):14459. doi:https://doi.org/10.3390/ijms241914459
  24. Farzan SF, Karagas MR, Chen Y. In utero and early life arsenic exposure in relation to long-term health and disease. Toxicology and Applied Pharmacology. 2013;272(2):384-390. doi:https://doi.org/10.1016/j.taap.2013.06.030
  25. Ali H, Khan E, Ilahi I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry. 2019;2019(1):1-14. doi:https://doi.org/10.1155/2019/6730305
  26. Liu Y, Chen C, Hao Z, Shen J, Tang S, Dai C. Ellagic Acid Reduces Cadmium Exposure-Induced Apoptosis in HT22 Cells via Inhibiting Oxidative Stress and Mitochondrial Dysfunction and Activating Nrf2/HO-1 Pathway. Antioxidants. 2024;13(11):1296. doi:https://doi.org/10.3390/antiox13111296
  27. Semu E. Heavy Metals and Organopesticides: Ecotoxicology, Health Effects and Mitigation Options with Emphasis on Sub-Saharan Africa. Toxicology: Current Research. 2019;3(1):1-14. doi:https://doi.org/10.24966/tcr-3735/100010
  28. Jacobson T, Smriti Priya, Sharma S, et al. Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast. Molecular and Cellular Biology. 2017;37(17). doi:https://doi.org/10.1128/mcb.00490-16
  29. Shetty A, Abraham JB, Nayak UK, Shetty A, Mohammed A, Sneha E. Evaluation of genotoxicity and cytotoxicity, metal ion release induced by metals from orthodontic appliances – An in vivo study. International Dental Journal of Student’s Research. 2021;5(1):7-13. doi:https://doi.org/10.18231/2278-3784.2017.0002
  30. Muhammad, Yaqoob A, Rehman K, et al. Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities. Frontiers in Molecular Biosciences. 2023;10. doi:https://doi.org/10.3389/fmolb.2023.1218497
  31. Chen P, Miah MR, Aschner M. Metals and Neurodegeneration. F1000Research. 2016;5:366. doi:https://doi.org/10.12688/f1000research.7431.1
  32. Melebary SJ. Heavy Metal Toxicity and Remediation in Human and Agricultural Systems: An Updated Review. Advances in Animal and Veterinary Sciences. 2023;11(4). doi:https://doi.org/10.17582/journal.aavs/2023/11.4.679.694
  33. Wang X, An Y, Jiao W, et al. Selenium Protects against Lead-induced Apoptosis via Endoplasmic Reticulum Stress in Chicken Kidneys. Biological Trace Element Research. 2017;182(2):354-363. doi:https://doi.org/10.1007/s12011-017-1097-9
  34. Murphy Michael P. How mitochondria produce reactive oxygen species. Biochemical Journal. 2008;417(1):1-13. doi:https://doi.org/10.1042/bj20081386
  35. Sies H, Berndt C, Jones DP. Oxidative Stress. Annual Review of Biochemistry. 2017;86(1):715-748. doi:https://doi.org/10.1146/annurev-biochem-061516-045037
  36. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews Neuroscience. 2019;20(3):148-160. doi:https://doi.org/10.1038/s41583-019-0132-6
  37. Stadtman E. Protein oxidation and aging. Science. 1992;257(5074):1220-1224. doi:https://doi.org/10.1126/science.1355616
  38. John R, Jan N. Calendula Officinalis-An Important Medicinal Plant with Potential Biological Properties. Proceedings of the Indian National Science Academy. 2017;93(0). doi:https://doi.org/10.16943/ptinsa/2017/49126
  39. Bakulski KM, Seo YA, Hickman RC, et al. Heavy Metals Exposure and Alzheimer’s Disease and Related Dementias. Journal of Alzheimer’s Disease : JAD. 2020;76(4):1215-1242. doi:https://doi.org/10.3233/JAD-200282
  40. de Almeida AJPO, de Oliveira JCPL, da Silva Pontes LV, et al. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Giustarini D, ed. Oxidative Medicine and Cellular Longevity. 2022;2022:1-23. doi:https://doi.org/10.1155/2022/1225578
  41. Zhang J, Wang X, Vikash V, et al. ROS and ROS-Mediated Cellular Signaling. Oxidative Medicine and Cellular Longevity. 2016;2016:1-18. doi:https://doi.org/10.1155/2016/4350965
  42. Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology. 2010;276(2):85-94. doi:https://doi.org/10.1016/j.tox.2010.07.009
  43. Verghese J, Abrams J, Wang Y, Morano KA. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System. Microbiology and Molecular Biology Reviews. 2012;76(2):115-158. doi:https://doi.org/10.1128/mmbr.05018-11
  44. Olanow CW, Arendash GW. Metals and free radicals in neurodegeneration. Current Opinion in Neurology. 1994;7(6):548-558. doi:https://doi.org/10.1097/00019052-199412000-00013
  45. Luo X, Meng J, Chen X, et al. Metabolomics-based study reveals the effect of lead (Pb) in the culture environment on Whitmania pigra. Scientific Reports. 2020;10(1). doi:https://doi.org/10.1038/s41598-020-61745-1
  46. Yaqoob A, Rehman K, Muhammad, Alvi M, Shoaib SM. Biochemical profiling of metabolomics in heavy metal-intoxicated impaired metabolism and its amelioration using plant-based bioactive compound. Frontiers in Molecular Biosciences. 2022;9. doi:https://doi.org/10.3389/fmolb.2022.1029729
  47. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metal Toxicity and the Environment. Experientia Supplementum. 2014;101(1):133-164. doi:https://doi.org/10.1007/978-3-7643-8340-4_6
  48. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021;9(3):42. doi:https://doi.org/10.3390/toxics9030042
  49. Dutta S, Mitra M, Agarwal P, et al. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signaling & Behavior. Published online April 5, 2018:1-49. doi:https://doi.org/10.1080/15592324.2018.1460048
  50. Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Frontiers in Microbiology. 2020;11. doi:https://doi.org/10.3389/fmicb.2020.01216
  51. Islam R, Zhao L, Zhang X, Liu LZ. MiR-218-5p/EGFR Signaling in Arsenic-Induced Carcinogenesis. Cancers. 2023;15(4):1204-1204. doi:https://doi.org/10.3390/cancers15041204
  52. Remigante A, Morabito R. Cellular and Molecular Mechanisms in Oxidative Stress-Related Diseases. International Journal of Molecular Sciences. 2022;23(14):8017. doi:https://doi.org/10.3390/ijms23148017
  53. Mladenova V, Mladenov E, Stuschke M, Iliakis G. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules.2022;27(5):1540-1540. doi:https://doi.org/10.3390/molecules27051540
  54. Althomali RH, Abbood MA, Abdu E, et al. Exposure to heavy metals and neurocognitive function in adults: a systematic review. Environmental Sciences Europe. 2024;36(1). doi:https://doi.org/10.1186/s12302-024-00843-7
  55. Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology. 2009;84(1):13-28. doi:https://doi.org/10.1002/jctb.1999
  56. Thanan R, Oikawa S, Hiraku Y, et al. Oxidative Stress and Its Significant Roles in Neurodegenerative Diseases and Cancer. International Journal of Molecular Sciences. 2014;16(1):193-217. doi:https://doi.org/10.3390/ijms16010193
  57. Zayani Z, Matinahmadi A, Tavakolpournegari A, Bidooki SH. Exploring Stressors: Impact on Cellular Organelles and Implications for Cellular Functions. Stresses. 2025;5(2):26. doi:https://doi.org/10.3390/stresses5020026
  58. Mukherjee A, Patra U, Bhowmick R, Chawla-Sarkar M. Rotaviral nonstructural protein 4 triggers dynamin-related protein 1-dependent mitochondrial fragmentation during infection. Cellular Microbiology. 2018;20(6):e12831. doi:https://doi.org/10.1111/cmi.12831
  59. Granville DJ, Cassidy BA, Ruehlmann DO, et al. Mitochondrial Release of Apoptosis-Inducing Factor and Cytochrome c During Smooth Muscle Cell Apoptosis. American Journal Of Pathology. 2001;159(1):305-311. doi:https://doi.org/10.1016/s0002-9440(10)61696-3
  60. Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio. 2022;12(4):678-693. doi:https://doi.org/10.1002/2211-5463.13388
  61. Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes in iron metabolism, ageing and apoptosis. Histochemistry and Cell Biology. 2008;129(4):389-406. doi:https://doi.org/10.1007/s00418-008-0394-y
  62. Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: An overview. Indian Journal of Pharmacology. 2011;43(3):246-253. doi:https://doi.org/10.4103/0253-7613.81505
  63. Flora SJS, Mittal M, Mehta A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. PubMed. 2008;128(4):501-523.
  64. Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment. 2019;191(7). doi:https://doi.org/10.1007/s10661-019-7528-7
  65. Kaur R, Sharma S, Kaur N. Heavy metals toxicity and the environment. Journal of Pharmacognosy and Phytochemistry. 2019;8:247-249.
  66. Schneider-Marin P, Lang W. Environmental costs of buildings: monetary valuation of ecological indicators for the building industry. The International Journal of Life Cycle Assessment. 2020;25(9):1637-1659. doi:https://doi.org/10.1007/s11367-020-01784-y
  67. Roberts SM, James RC, Williams PL. Principles of Toxicology : Environmental and Industrial Applications. Wiley; 2015.
  68. Cochemé Helena M, Murphy Michael P. Mitochondria as a source of reactive oxygen species. Biochemical Journal. Published online May 7, 2009:c3. doi:https://doi.org/10.1042/bj20090056
  69. Cheng H, Yang B, Ke T, et al. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. Toxics. 2021;9(6):142. doi:https://doi.org/10.3390/toxics9060142
  70. Gao M, Dai MT, Gong GH. Dysfunctional glucose metabolism triggers oxidative stress to induce kidney injury in diabetes. World Journal of Diabetes. 2025;16(4). doi:https://doi.org/10.4239/wjd.v16.i4.102554
  71. Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proceedings of the National Academy of Sciences. 1998;95(9):4997-5002. doi:https://doi.org/10.1073/pnas.95.9.4997
  72. Hasenjäger A, Bernhard Gillissen, Antje Müller, et al. Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells. Oncogene. 2004;23(26):4523-4535. doi:https://doi.org/10.1038/sj.onc.1207594
  73. Tamás M, Sharma S, Ibstedt S, Jacobson T, Christen P. Heavy Metals and Metalloids As a Cause for Protein Misfolding and Aggregation. Biomolecules. 2014;4(1):252-267. doi:https://doi.org/10.3390/biom4010252
  74. Gomes CM, Pernilla Wittung-Stafshede. Protein Folding and Metal Ions. CRC Press; 2016.
  75. Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2003;57(9):386-398. doi:https://doi.org/10.1016/s0753-3322(03)00012-x
  76. Oladele EO, P. G. C. Odeigah, Taiwo IA. The genotoxic effect of lead and zinc on bambara groundnut (Vigna subterranean). African Journal of Environmental Science and Technology. 2013;7(1):9-13. doi:https://doi.org/10.5897/ajest12.123
  77. Nocelli N, Bogino P, Banchio E, Giordano W. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia. Materials. 2016;9(6):418. doi:https://doi.org/10.3390/ma9060418
  78. Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy. 2020;5(8). doi:https://doi.org/10.1038/s41392-020-0110-5
  79. Al-Janabi AAHS. Toxic effect of heavy metals on dermatophytes. Mycoses. 2010;54(4):345-349. doi:https://doi.org/10.1111/j.1439-0507.2010.01876.x
  80. Vecchi Brumatti L, Rosolen V, Mariuz M, et al. Impact of Methylmercury and Other Heavy Metals Exposure on Neurocognitive Function in Children Aged 7 Years: Study Protocol of the Follow-up. Journal of Epidemiology. 2021;31(2):157-163. doi:https://doi.org/10.2188/jea.je20190284
  81. Calderón-Garcidueñas L, Torres-Jardón R, Kulesza RJ, Park SB, D’Angiulli A. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges. Frontiers in Human Neuroscience. 2014;8. doi:https://doi.org/10.3389/fnhum.2014.00613
  82. Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Frontiers in Plant Science. 2016;6. doi:https://doi.org/10.3389/fpls.2015.01143
  83. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative Stress Is Inherent in Prostate Cancer Cells and Is Required for Aggressive Phenotype. Cancer Research. 2008;68(6):1777-1785. doi:https://doi.org/10.1158/0008-5472.CAN-07-5259
  84. Smith AH, Yunus M, Khan AF, et al. Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh. International Journal of Epidemiology. 2013;42(4):1077-1086. doi:https://doi.org/10.1093/ije/dyt120
  85. Wang Z, Yang C. Metal carcinogen exposure induces cancer stem cell-like property through epigenetic reprograming: A novel mechanism of metal carcinogenesis. Seminars in Cancer Biology. 2019;57:95-104. doi:https://doi.org/10.1016/j.semcancer.2019.01.002
  86. Yalcin S. Effect on MAPK Signal Path of Lead, Nickel, Mercury, Cadmium and Chromium in Breast Cancer Cell Line. Annals of experimental and molecular biology. 2023;5(1):1-9. doi:https://doi.org/10.23880/aemb-16000117
  87. Nakka VP, Prakash-babu P, Vemuganti R. Crosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries. Molecular Neurobiology. 2014;53(1):532-544. doi:https://doi.org/10.1007/s12035-014-9029-6
  88. Amir Hossein Khoshakhlagh, Mahdiyeh Mohammadzadeh, Agnieszka Gruszecka-Kosowska. The preventive and carcinogenic effect of metals on cancer: a systematic review. BMC Public Health. 2024;24(1). doi:https://doi.org/10.1186/s12889-024-19585-5
  89. Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie. 2006;88(11):1549-1559. doi:https://doi.org/10.1016/j.biochi.2006.10.001
  90. Gjerstorff M, Burns JS, Nielsen O, Kassem M, Ditzel H. Epigenetic Modulation of Cancer-Germline Antigen Gene Expression in Tumorigenic Human Mesenchymal Stem Cells. The American Journal of Pathology. 2009;175(1):314-323. doi:https://doi.org/10.2353/ajpath.2009.080893
  91. Rudolf K, Rezacova M, Rudolf E. Non-cytotoxic concentrations of hexavalent chromium induce epigenetic and energetic changes in skin keratinocytes. Toxicology Letters. 2016;259:S161. doi:https://doi.org/10.1016/j.toxlet.2016.07.382
  92. Gu Q, Wang C, Xiao Q, Chen Z, Han Y. Melatonin Confers Plant Cadmium Tolerance: An Update. International Journal of Molecular Sciences. 2021;22(21):11704. doi:https://doi.org/10.3390/ijms222111704
  93. Juhaszova M, Zorov DB, Kim SH, et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation. 2004;113(11):1535-1549. doi:https://doi.org/10.1172/jci19906
  94. Lu C, Thompson Craig B. Metabolic Regulation of Epigenetics. Cell Metabolism. 2012;16(1):9-17. doi:https://doi.org/10.1016/j.cmet.2012.06.001
  95. Zhao W, Zhou T, Zheng HZ, et al. Yeast polyubiquitin gene UBI4 deficiency leads to early induction of apoptosis and shortened replicative lifespan. Cell Stress and Chaperones. 2017;23(4):527-537. doi:https://doi.org/10.1007/s12192-017-0860-3
  96. MacDiarmid CW, Taggart J, Jeong J, Kerdsomboon K, Eide DJ. Activation of the Yeast UBI4 Polyubiquitin Gene by Zap1 Transcription Factor via an Intragenic Promoter Is Critical for Zinc-deficient Growth. Journal of Biological Chemistry. 2016;291(36):18880-18896. doi:https://doi.org/10.1074/jbc.m116.743120
  97. Buaisha M, Balku S, Yaman ŞÖ. Heavy Metal Removal Investigation in Conventional Activated Sludge Systems. Civil Engineering Journal. 2020;6(3):470-477. doi:https://doi.org/10.28991/cej-2020-03091484
  98. Luque-García JL, Cabezas-Sánchez P, Cámara C. Proteomics as a tool for examining the toxicity of heavy metals. TrAC Trends in Analytical Chemistry. 2011;30(5):703-716. doi:https://doi.org/10.1016/j.trac.2011.01.014
  99. Panyala NR, Peña-Méndez EM, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. Journal of Applied Biomedicine. 2009;7(2):75-91. doi:https://doi.org/10.32725/jab.2009.008
  100. Radilov AS, Ukolov AI. Toxicometabolomics — integration of preventive and analytical toxicology. Toxicological Review. 2022;30(5):286-296. doi:https://doi.org/10.47470/0869-7922-2022-30-5-286-296
  101. Yuan Y, Zhang Y, Zhao S, et al. Cadmium-induced apoptosis in neuronal cells is mediated by Fas/FasL-mediated mitochondrial apoptotic signaling pathway. Scientific Reports. 2018;8(1). doi:https://doi.org/10.1038/s41598-018-27106-9
  102. Ba Q, Zhou J, Li J, Cheng S, Zhang X, Wang H. Mutagenic Characteristics of Six Heavy Metals in Escherichia coli: The Commonality and Specificity. Environmental Science & Technology. 2022;56(19):13867-13877. doi:https://doi.org/10.1021/acs.est.2c04785
  103. Song XB, Liu G, Liu F, et al. Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells. Cell Death & Disease. 2017;8(6):e2863-e2863. doi:https://doi.org/10.1038/cddis.2017.262
  104. Ford AE, Denicourt C, Morano KA. Thiol stress–dependent aggregation of the glycolytic enzyme triose phosphate isomerase in yeast and human cells. Molecular Biology of the Cell. 2019;30(5):554-565. doi:https://doi.org/10.1091/mbc.e18-10-0616
  105. Sharma U, Sharma JG. Nanotechnology for the bioremediation of heavy metals and metalloids. Journal of Applied Biology & Biotechnology. Published online July 20, 2022:34-44. doi:https://doi.org/10.7324/jabb.2022.100504
  106. Batool M. Determination of Heavy Metal Toxicity in Blood and Health Effect by AAS (Detection of Heavy Metals and its Toxicity in Human Blood). Archives of Nanomedicine: Open Access Journal. 2018;1(2). doi:https://doi.org/10.32474/anoaj.2018.01.000107
  107. Gulcin İ, Alwasel SH. Metal Ions, Metal Chelators and Metal Chelating Assay as Antioxidant Method. Processes. 2022;10(1):132. doi:https://doi.org/10.3390/pr10010132
  108. George GN, Prince RC, Gailer J, et al. Mercury Binding to the Chelation Therapy Agents DMSA and DMPS and the Rational Design of Custom Chelators for Mercury. Chemical Research in Toxicology. 2004;17(8):999-1006. doi:https://doi.org/10.1021/tx049904e
  109. Yadav SK. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany. 2010;76(2):167-179. doi:https://doi.org/10.1016/j.sajb.2009.10.007
  110. Alzain H. The Impact of Heavy Elements on Public Health. International journal of research and review. 2023;10(8):794-810. doi:https://doi.org/10.52403/ijrr.202308103
  111. Fulda S, Gorman AM, Hori O, Samali A. Cellular Stress Responses: Cell Survival and Cell Death. International Journal of Cell Biology. 2010;2010(214074):1-23.
  112. Ibtisam A. Al-Ali,Rafah S. Almuttairi, Ameera Jasim Al-Aaraji, Fakhir M Alzubaidy. Effect of Methotrexate and Matricaria Chamomile on testis tissue and some antioxidants in Albino rats. Journal of Pharmaceutical Negative Results. Published online October 10, 2022:1232-1238. doi:https://doi.org/10.47750/pnr.2022.13.s06.161
  113. Öner M, Atli G, Canli M. CHANGES IN SERUM BIOCHEMICAL PARAMETERS OF FRESHWATER FISH OREOCHROMIS NILOTICUS FOLLOWING PROLONGED METAL (Ag, Cd, Cr, Cu, Zn) EXPOSURES. Environmental Toxicology and Chemistry. 2008;27(2):360. doi:https://doi.org/10.1897/07-281r.1
  114. Zhakypbek Y, Kossalbayev BD, Belkozhayev AM, et al. Reducing Heavy Metal Contamination in Soil and Water Using Phytoremediation. Plants. 2024;13(11):1534. doi:https://doi.org/10.3390/plants13111534
  115. Xu X, Xu Z, Liang L, et al. Risk hotspots and influencing factors identification of heavy metal(loid)s in agricultural soils using spatial bivariate analysis and random forest. The Science of The Total Environment. 2024;954:176359-176359. doi:https://doi.org/10.1016/j.scitotenv.2024.176359
  116. Singh BJ, Chakraborty A, Sehgal R. A systematic review of industrial wastewater management: Evaluating challenges and enablers. Journal of Environmental Management. 2023;348:119230. https://www.sciencedirect.com/science/article/pii/S0301479723020182
  117. Singh A, Shah SS, Sharma C, et al. An approach towards different techniques for detection of heavy metal ions and their removal from waste water. Journal of Environmental Chemical Engineering. 2024;12(3):113032. doi:https://doi.org/10.1016/j.jece.2024.113032
  118. Malik A. Metal bioremediation through growing cells. Environment International. 2004;30(2):261-278. doi:https://doi.org/10.1016/j.envint.2003.08.001
  119. Münzel T, Hahad O, Daiber A, Landrigan P. Soil and water pollution and human health: what should cardiologists worry about? Cardiovascular Research. 2022;119(2). doi:https://doi.org/10.1093/cvr/cvac082
  120. Teissedre PL. Composition of grape and wine from resistant vines varieties. OENO One. 2018;52(3):211-217. doi:https://doi.org/10.20870/oeno-one.2018.52.3.2223
  121. Russell SJ. Terroir: The Role of Geology, Climate, and Culture in the Making of French Wines. Agricultural History. 2000;74(1):123-124. doi:https://doi.org/10.1215/00021482-74.1.123
  122. Paduraru E, Iacob D, Rarinca V, et al. Comprehensive Review Regarding Mercury Poisoning and Its Complex Involvement in Alzheimer’s Disease. International Journal of Molecular Sciences. 2022;23(4):1992. doi:https://doi.org/10.3390/ijms23041992
  123. Chen R, Chen H, Song L, Yao Z, Meng F, Teng Y. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Science of The Total Environment. 2019;694:133819-133819. doi:https://doi.org/10.1016/j.scitotenv.2019.133819
  124. Kuhn M, Santinha AJ, Platt RJ. Moving from in vitro to in vivo CRISPR screens. Gene and Genome Editing. 2021;2:100008. doi:https://doi.org/10.1016/j.ggedit.2021.100008
  125. Lockyer NP. Secondary Ion Mass Spectrometry Imaging of Biological Cells and Tissues. Methods in Molecular Biology. Published online December 2, 2013:707-732. doi:https://doi.org/10.1007/978-1-62703-776-1_32
  126. Raji Z, Karim A, Karam A, Seddik Khalloufi. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste. 2023;1(3):775-805. doi:https://doi.org/10.3390/waste1030046
  127. Sankhla MS, Kumari M, Nandan M, Kumar R, Agrawal P. Heavy Metals Contamination in Water and their Hazardous Effect on Human Health-A Review. International Journal of Current Microbiology and Applied Sciences. 2016;5(10):759-766. doi:https://doi.org/10.20546/ijcmas.2016.510.082
  128. Gupta R, Sen N. Traumatic brain injury: a risk factor for neurodegenerative diseases. Reviews in the Neurosciences. 2016;27(1). doi:https://doi.org/10.1515/revneuro-2015-0017
  129. Patil M, Sheth KA, Krishnamurthy AC, Devarbhavi H. A Review and Current Perspective on Wilson Disease. Journal of Clinical and Experimental Hepatology. 2013;3(4):321-336. doi:https://doi.org/10.1016/j.jceh.2013.06.002

Similar Articles

You may also start an advanced similarity search for this article.